Machine Learning

University of Roehampton

Course Description

  • Course Name

    Machine Learning

  • Host University

    University of Roehampton

  • Location

    London, England

  • Area of Study

    Computer Science

  • Language Level

    Taught In English

    Hours & Credits

  • Overview

    Machine Learning explores how machines can learn from existing data to provide stochastic systems that perform tasks based on patterns and inference. The module first introduces what machine learning is, and then examines different approaches to machine learning, including decision trees and neural networks. The main body of the module focuses on building learning systems from existing data sets, as well as evaluating the performance of the systems developed. Finally, the module examines the use of machine learning in data mining, the ethical concerns related to machine learning, and how biased data sets can lead to biased systems.

    Machine Learning focuses on tools, algorithms, and libraries that can be applied to data sets to build systems that can perform tasks in an intelligent manner. Students will work with a variety of tools based on the type of technique being explored that week. Students will work in programming languages best suited for the tool being used.

    Machine Learning provides the capstone to the Algorithms and Artificial Intelligence theme within Computer Science. The aim is for students to have fluency in the modern tools used in a variety of industries to perform automation tasks. Students will also understand the ethical concerns of using such systems. The module builds on the basic problem-space searching techniques in Artificial Intelligence by exploring learning techniques that enable a more general intelligence approach to be applied to narrow intelligence problems.

Course Disclaimer

Courses and course hours of instruction are subject to change.

Eligibility for courses may be subject to a placement exam and/or pre-requisites.

Some courses may require additional fees.

Credits earned vary according to the policies of the students' home institutions. According to ISA policy and possible visa requirements, students must maintain full-time enrollment status, as determined by their home institutions, for the duration of the program.

Please reference fall and spring course lists as not all courses are taught during both semesters.

Please note that some courses with locals have recommended prerequisite courses. It is the student's responsibility to consult any recommended prerequisites prior to enrolling in their course.

X

This site uses cookies to store information on your computer. Some are essential to make our site work; others help us improve the user experience. By using the site, you consent to the placement of these cookies.

Read our Privacy Policy to learn more.

Confirm